The generator matrix 1 0 1 1 1 X^2 1 1 0 0 1 1 1 0 1 1 1 0 1 1 0 1 1 X^2 1 1 0 1 1 X 1 X^2+X 1 1 1 1 X X^2 1 X 1 1 1 1 1 X^2+X 1 1 1 1 X^2+X X^2+X 1 1 1 0 X^2 1 1 1 0 1 X^2 0 1 1 0 1 1 X^2 X+1 1 1 X^2 X^2+X+1 X^2 1 X^2+1 X+1 X^2 1 X+1 X 1 0 1 1 X^2+X X^2+X+1 1 X^2+1 0 1 X+1 1 X+1 X+1 X+1 X 1 1 0 1 X^2+X+1 X^2+X X 1 0 1 X^2+1 X X^2+1 0 1 1 X^2+1 0 1 1 0 1 X^2+X+1 X 1 X^2 1 0 0 X 0 0 0 0 X^2 X^2+X X X^2+X X^2+X X^2+X X^2 0 X X^2+X X 0 X 0 X^2 X^2+X X X^2+X X X X^2 X^2+X 0 X^2 X^2 X^2 X^2+X X^2 X^2 X X^2+X 0 0 X X^2+X X^2+X X^2 0 X^2+X X X^2 X^2 X X^2+X X^2+X X^2+X X^2+X X 0 X^2 X X X^2 X^2 X X^2+X 0 0 0 X 0 0 X^2 X^2 X^2 X^2 0 X^2 X^2 X^2+X X X X X^2+X X^2+X X X X^2+X X^2+X X^2+X X^2 X^2 X X X 0 X^2 0 X X X^2 0 0 X^2+X X X^2 X X^2+X 0 X^2+X X^2 X^2 X^2 X 0 X^2+X 0 X^2+X X^2 0 X^2+X 0 X 0 X^2+X 0 X^2 X^2 X^2 0 0 0 0 X X^2+X X^2+X X^2 X 0 0 X^2+X X X X X X^2 0 0 X^2+X X^2 X^2+X X^2 X^2 X^2 0 X^2+X 0 X^2+X X^2+X 0 X^2 X X X 0 X^2+X X X X^2+X X^2 0 0 0 X X^2+X X^2 0 X^2 X^2 0 X X^2 X X^2+X X^2 0 X^2+X X X^2+X 0 X^2+X X^2 generates a code of length 63 over Z2[X]/(X^3) who´s minimum homogenous weight is 56. Homogenous weight enumerator: w(x)=1x^0+87x^56+156x^57+294x^58+248x^59+379x^60+416x^61+366x^62+400x^63+301x^64+428x^65+248x^66+264x^67+193x^68+120x^69+86x^70+16x^71+42x^72+22x^74+18x^76+8x^78+1x^80+2x^84 The gray image is a linear code over GF(2) with n=252, k=12 and d=112. This code was found by Heurico 1.16 in 0.92 seconds.